DETECÇÃO INDIRETA DE DESCARGAS ATMOSFÉRICAS: UM SIMULADOR PARA CARACTERÍSTICAS REGIONAIS

Ricardo de Andrade Shinkai¹, José Alberto Silva de Sa², Brigida Ramati Pereira da Rocha³ Sistema de Proteção da Amazônia (SIPAM)¹³, Universidade do Estado do Pará (UEPA)² ricardo.shinkai@sipam.gov.br¹, josealbertosa@uepa.br², brigida.rocha@sipam.gov.br³

Resumo – Este artigo apresenta uma ferramenta computacional para simular a influência das características regionais na propagação de ondas eletromagnéticas originadas por descargas atmosféricas nuvem-solo. O método foi utilizado para simular a propagação de ondas eletromagnéticas através do programa MATLAB®, utilizando como modelo de corrente de retorno no canal de descarga o modelo do tipo de engenharia Linha de Transmissão (TL). Adotouse um sistema de detecção indireta de descargas atmosféricas (LLS) composto por quatro sensores, inicialmente considerando um meio ideal sem perdas e posteriormente levando em conta as características regionais através da velocidade de propagação da onda.

Palavras-Chave – descarga atmosférica, modelo TL, propagação de ondas eletromagnéticas, sistemas LLS e simulação computacional.

INDIRECT DETECTION OF LIGHTNING: A SIMULATOR FOR REGIONAL CHARACTERISTICS

Abstract - This article presents a computational tool to simulate the influence of regional characteristics in the propagation of electromagnetic waves caused by cloudto-ground lightning. The method was used to simulate the propagation of electromagnetic waves through the MATLAB® software, using as return current model in the discharge channel model type engineering Transmission Line (TL). Adopted an indirect detection system lightning (LLS) consists of four sensors, initially considering a means ideal lossless and then taking into account the regional characteristics through the wave propagation speed.

Keywords - computer simulation, lightning, LLS system, propagation of electromagnetic waves and TL model.

I. INTRODUÇÃO

Sensores utilizados em sistemas indiretos de detecção e localização de descargas atmosféricas, mais conhecidos

XIV CEEL - ISSN 2178-8308 03 a 07 de Outubro de 2016 Universidade Federal de Uberlândia - UFU Uberlândia - Minas Gerais - Brasil como LLS (Lightning Location Systems), apresentam erros em suas indicações que resultam das aproximações dos modelos adotados para o cômputo da descarga e da influência de fatores de natureza física (como as características do solo e do relevo) sobre o pulso eletromagnético irradiado pela descarga em seu caminho de propagação até as estações de detecção. O fabricante adota certos procedimentos para calibração do sistema que objetivam reduzir os erros de suas indicações, entretanto, eles são baseados em redundâncias e experiências realizadas com o sistema em regiões particulares. Isto limita a eficácia desses procedimentos para aplicação generalizada aos sistemas dispostos nas diferentes partes do planeta [1]. Este trabalho tem como objetivo mensurar o efeito de alguns desses parâmetros como a velocidade de propagação da onda. Os resultados apontam para a necessidade de estudos locais que considerem as peculiaridades de cada área de cobertura do sistema para reduzir esses erros.

II. CONSIDERAÇÕES BÁSICAS

Nos sistemas LLS define-se uma janela de tempo, denominada "janela de coincidência", utilizada para correlacionar os dados dos sensores referentes a uma possível localização da descarga. Em outras palavras, esse tempo corresponde ao atraso sofrido pelo sinal ao ser detectado por dois sensores muito distantes um do outro e permite ao sistema determinar quais mensagens dos sensores correspondem a uma mesma descarga. Uma onda eletromagnética, devido ao fato de se propagar com uma velocidade finita (próxima à velocidade da luz), irá atingir sensores muito distantes entre si em tempos diferentes. Essa diferença constitui a "janela de coincidência" e é calculada com base na velocidade da luz e na maior distância em linha reta entre dois sensores da malha. Com base neste tempo, o sistema desconta os eventuais atrasos de propagação devido às diferentes distâncias dos sensores da rede e determinam quais sensores detectaram a descarga [2].

III. METODOLOGIA DE CÁLCULO

Métodos numéricos foram utilizados para simular a propagação de ondas eletromagnéticas na Amazônia oriental brasileira. Uma área de interesse (AOI) foi definida entre as cidades de Belém (-1.4087/-48.4627), Bragança (-0,9771/-46.6078), Ulianópolis (-3.7996/-47.5099) e Tucuruí (-3.7608/-49.6613) (Figura 1) onde se pode relacionar a localização de um ponto com as coordenadas geográficas (Lat/Long) (Datum WGS84). Posteriormente, de forma arbitrária, foram selecionados cinco pontos nesta AOI: flash1 (-1,6785/-47,3667), flash2 (-1,9363/-48,3316), flash3 (-3,1801/-47,8868), flash4 (-3,2388/-49,0017) e flash5 (-

2,5198/-48,1532) onde o modelo TL foi utilizado, em cada ponto, para representar a corrente de retorno de descarga atmosférica. Em seguida, os efeitos desses eventos foram simulados nos sensores localizados nestas cidades. Inicialmente um meio ideal foi considerado e depois as características geográficas foram introduzidas através do parâmetro velocidade de propagação da onda.

Fig. 1. AOI e descargas atmosféricas: (a) geral; (b) detalhe.

Também foi considerada nas simulações a técnica de localização de descargas do tipo "Tempo de Chegada" (ToA-Time of Arrival), pela detecção do campo elétrico vertical (Ez) da onda eletromagnética originada na descarga e incidente em antenas monopolo vertical. Este tipo de antena é indicada para a captação de sinais na faixa de VLF (Very Low Frequency) devido ao modo de propagação, exatamente onde há a maior concentração de energia no sinal oriundo das descargas atmosféricas nuvem-solo (10 kHz)[3]. Na Tabela I abaixo se tem as distâncias entre os eventos simulados e os sensores localizados nas cidades citadas (em metros):

Tabela I – Distância entre os sensores e os eventos (m)

	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	125.541	114.643	253.082	343.950
Flash2	60.137	219.118	225.433	250.231
Flash3	206.054	281.983	80.305	207.472
Flash4	211.039	364.984	177.064	93.316
Flash5	127.592	242.094	158.588	216.770

A. Corrente na Base do Canal da Descarga

Neste artigo adotou-se como referência o trabalho publicado em 1990 por Nucci et al. [4], considerando nas simulações os mesmos parâmetros e situações de referência.

Em [4] a corrente na base do canal i(0,t) foi calculada através da expressão apresentada por Heidler [5], a qual

considera a soma de duas funções e representa, com boa exatidão, a forma de onda das correntes das descargas de retorno subsequentes, medidas por Berger et al.[6]:

$$i(0,t) = \frac{I_{01}}{\eta} \cdot \frac{(t/\tau_1)^n}{(t/\tau_1)^{n+1}} \cdot e^{-t/\tau_2} + I_{02}(e^{-t/\tau_3} - e^{-t/\tau_4}) \quad (1)$$

Onde:

- I_{01} e I_{02} Amplitude da corrente na base do canal (kA).
- $\tau_1 e \tau_3$ Constante de tempo para frente da onda (µs).
- $\tau_2 e \tau_4$ Constante de tempo de decaimento da onda (µs).
- η Fator de correção da amplitude da corrente.

n – Expoente com valor que varia de 2 a 10.

Para a expressão acima I_{01} =9,9kA, η =0,845, τ_1 =0,072µs, τ_2 =5,0µs, I_{02} =7,5kA, τ_3 =100µs, τ_4 =6,0µs e n=2 [4], tendo como resultados a forma de onda da corrente na base do canal e sua respectiva derivada em relação ao tempo, ilustradas nos gráficos da Figura 2. A corrente tem amplitude de 11kA e derivada máxima de aproximadamente 105kA/µs, valores considerados representativos de correntes subsequentes típicas, conforme experimentos realizados com descargas atmosféricas provocadas por foguetes [7].

Fig. 2. Corrente na base do canal usada para cálculo dos campos: (a) forma de onda; (b) derivada da corrente.

B. Distribuição Espaço-temporal da Corrente ao Longo do Canal de Descarga

Adotou-se neste trabalho o Modelo da Linha de Transmissão (TL) [8] para determinação da distribuição espaço-temporal da corrente ao longo do canal. Neste modelo o canal é considerado como uma linha de transmissão ideal na qual a corrente se propaga com velocidade v sem sofrer atenuação ou distorção. Desse modo, a corrente em um ponto do canal de altura z', em um instante t, pode ser determinada através da expressão:

$$i(z',t) = i(0,t-z'/v)$$
, para $z' \le v.t$
 $i(z',t) = 0$, para $z' > v.t$ (2)

A distribuição espaço-temporal da corrente (cronometrado a partir do início da descarga) para três posições no canal está representada na Figura 3 abaixo:

Fig. 3. Forma de onda da corrente em três posições ao longo do canal (0 km, 2 km e 4 km) para v=1,3x10⁸ m/s.

C. Campo Elétrico Vertical

Para determinação de Ez o canal de descarga foi considerado perpendicular ao plano de terra, com comprimento total H e sem ramificações. A Figura 4 ilustra, em coordenadas cilíndricas, os parâmetros geométricos empregados para o cálculo dos campos, onde $h_c(t)$ corresponde à posição real da frente de onda da corrente no instante t e z' é a posição em que o observador, localizado no ponto P, "enxerga" a frente de onda em um determinado instante t.

A expressão apresentada em [9,10] e utilizada neste trabalho para o cálculo do componente vertical do campo elétrico de um elemento discreto infinitesimal do canal de descarga (dEz), para o caso de solo perfeitamente condutor é:

$$dE_{z}(r, \emptyset, h, t) = \frac{dz'}{4\pi\varepsilon_{0}} \cdot \left[\frac{2.(h-z')^{2}-r^{2}}{R(z')^{5}} \cdot \int_{0}^{t} i(0, t - z'/v - R(z')/c) d\tau + \frac{2.(h-z')^{2}-r^{2}}{c.R(z')^{4}} \cdot i(0, t - z'/v - R(z')/c) - \frac{r^{2}}{c^{2}.R(z')^{3}} \cdot \frac{\partial i(0, t-z'/v - R(z')/c)}{\partial t} \right]$$
(3)

Onde:

- t Instante de tempo.
- φ Ângulo azimutal.
- h Altura do ponto P em relação ao solo.
- r Distância entre o canal de descarga e o ponto P.
- dz' Elemento infinitesimal do canal de descarga.

 ε_0 – Permissividade do espaço-livre.

z' – Posição da frente de onda da corrente no canal de descarga "vista" pelo observador no ponto P.

R(z') – Distância entre dz' e o ponto P.

i(z',t) – Corrente ao longo do canal de descarga em função de z' e t.

v – Velocidade da frente de onda da corrente no canal de descarga.

c - Velocidade da luz no vácuo.

Fig. 4. Parâmetros geométricos para cálculo dos campos admitindo o solo um plano perfeitamente condutor (adaptado de [11]).

Nesta expressão, o primeiro termo é denominado campo eletrostático, predominante próximo da fonte, o termo intermediário é o campo de indução, e o último o campo de radiação que é predominante para pontos distantes da fonte. Para o solo condutor perfeito leva-se em conta a imagem do canal de descarga no solo substituindo R(z') por R(-z')(distância entre o ponto de observação e a imagem do elemento infinitesimal dz', vide Figura 4) e z' por -z' em (3). O campo elétrico vertical total no ponto P é obtido considerando-se as contribuições da corrente i(z',t) presente em todos os elementos infinitesimais dz' ao longo do canal. Portanto, se dz'=1m:

$$Ez = \sum_{i=1}^{H} dEz(j,k) + \sum_{i=1}^{H} dEz_{imagem}(j,k)$$
(4)

Onde:

H – comprimento do canal da descarga atmosférica. k – índice que indexa o instante de tempo t.

j – índice que indexa a posição z'.

O campo Ez foi calculado para as mesmas condições consideradas em [4], ou seja, corrente da descarga indicada na Figura 2, modelo TL, H=4km, v=1, $3x10^8$ m/s e h=0 (nível do solo).

Na Figura 5 a seguir comparam-se os resultados obtidos para as mesmas distâncias r entre o ponto P e o canal de descargas adotadas em [4] (50m, 5km e 100km) para os primeiros 5 μ s, sendo as ondas apresentadas sem considerar o tempo de atraso. Verifica-se uma boa concordância entre os resultados desta simulação com os da referência citada, validando assim o procedimento adotado [12].

Fig. 5. Comparação entre os resultados obtidos neste trabalho (acima) e aqueles obtidos em [4] (abaixo) para Ez nas distâncias: (a)(b) 50m; (c)(d) 5km; (e)(f) 100km.

IV. SIMULAÇÃO E ANÁLISE

A fim de ficar mais próximo da situação real foi definido na simulação um intervalo de detecção de Ez limitado entre um valor mínimo de sensibilização dos sensores (threshold) e um valor máximo de sobrecarga destes (overhead). Os valores escolhidos estão relacionados com a precisão de interpretação de Ez nos vários gráficos gerados no MATLAB® a partir da definição prévia dos valores de 1000 amostras com resolução de 0,1 para o parâmetro tempo, na escala em microssegundos. Ou seja, um intervalo de 100µs para análise dos eventos.

$$\Gamma hreshold (min) = 1 V/m$$
(5)

Overhead
$$(max) = 3 V/m$$

Obviamente, na prática, esses valores são bastante diferentes e dependem da tecnologia utilizada nos sensores, entretanto, o princípio é o mesmo, ou seja, os sensores detectam e gravam a forma de onda do campo elétrico, dentro de uma faixa de valores, e encaminham a uma central de processamento que as compara com um banco de dados com informações de descargas atmosféricas. Neste servidor central é então definido se o sinal recebido se trata realmente desse tipo de evento a partir da análise dos parâmetros da onda detectada, podendo, inclusive, em caso afirmativo, classificá-lo em nuvem-solo ou intranuvem [1]. Também, como mencionado, após as simulações considerando a velocidade de propagação da onda eletromagnética originada no canal de descarga atmosférica igual à velocidade da luz no vácuo c, considerou-se a influência do ambiente geográfico local através de um atraso nesta propagação alterando a velocidade para um valor c'. Valores assim definidos:

$$c = 3x10^8 \text{ m/s e c'} = 2,9x10^8 \text{ m/s}$$
 (6)

A. Resultados

1) Valor de pico do campo elétrico vertical

Inicialmente foram analisados os resultados dos efeitos dos eventos simulados das descargas atmosféricas relativas ao parâmetro valor de pico de Ez, conforme ilustram a Tabela II e Tabela III abaixo (valores em volt por metro -V/m) para as duas velocidades:

Tabela II – Valor de Pico de Ez para velocidade igual a c

	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	2,265	2,481	1,123	0,8263
Flash2	4,734	1,297	1,261	1,136
Flash3	1,380	1,008	3,543	1,370
Flash4	1,347	0,7787	1,606	3,049
Flash5	2,229	1,174	1,793	1,311

Tabela III - Valor de Pico de Ez para velocidade igual a c'

	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	2,424	2,655	1,202	0,8843
Flash2	5,066	1,388	1,349	1,216
Flash3	1,476	1,079	3,792	1,466
Flash4	1,441	0,8333	1,718	3,262
Flash5	2,385	1,256	1,919	1,403

Onde se verifica um aumento neste parâmetro para c' em relação à c. Os valores marcados em azul foram aqueles que ficaram abaixo do limiar mínimo de sensibilidade dos sensores (threshold), e os em vermelho foram aqueles que levaram à saturação os mesmos (overhead).

2) Tempo de captação do sinal e tempo total

O primeiro parâmetro é relativo ao tempo que o sensor foi sensibilizado pelo sinal, ou seja, desde a ultrapassagem do limiar threshold até o instante de pico ("Tempo de Subida do Pulso"[1]), mais o intervalo decorrido entre o instante de pico até retorno ao limiar de sensibilização ("Largura de Pulso"[1]). A Tabela IV e Tabela V mostram esses valores (em microssegundos - μ s), sem considerar o tempo de deslocamento do sinal do canal de descarga até os sensores.

Tabela IV - Tempo de Captação para velocidade igual a c

	Belem	Bragança	Ulianopolis	Tucurui
Flash1	64,8	84,7	2,2	-
Flash2	-	4,5	4,0	2,3
Flash3	5,9	0,7	-	5,8
Flash4	5,4	-	12,5	-
Flash5	61,6	2,8	25,9	4,8

Tabela V - Tempo de Captação para velocidade igual a c'

	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	74,8	95,6	3,2	-
Flash2	-	6,1	5,4	3,4
Flash3	8,0	1,6	-	7,8
Flash4	7,2	-	19,2	-
Flash5	71,6	3,9	35,0	6,4

Já na Tabela VI e Tabela VII tem-se esses tempos adicionados aos intervalos de deslocamento da onda (também em μ s), ou seja, o tempo total desde a ocorrência do evento até seu processamento no sensor.

Tabela VI - Tempo Total para velocidade igual a c

	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	483,27	466,84	845,81	-
Flash2	-	734,89	755,44	836,40
Flash3	692,75	940,64	-	697,37
Flash4	708,86	-	602,71	-
Flash5	486,91	809,78	554,53	727,37

Tabela VII - Tempo Total para velocidade igual a c'

				0
	Belém	Bragança	Ulianópolis	Tucuruí
Flash1	507,7	490,92	875,90	-
Flash2	-	761,68	782,76	866,27
Flash3	718,53	973,96	-	723,22
Flash4	734,92	-	629,77	-
Flash5	511,57	838,71	581,86	753,88

Onde novamente se verifica um aumento nos valores para c' em relação à c. Observa-se que apenas o evento flash5 teve captação da onda gerada em todos os sensores.

3) Exemplos de gráficos gerados no MATLAB®

Finaliza-se a demonstração dos resultados com alguns gráficos gerados pelo MATLAB®, indicando-se como foram feitas as medidas, conforme ilustra a Figura 6:

Fig. 6. Gráficos do MATLAB® para o evento flash5 (velocidade de propagação c): (a) Belém; (b) Ulianópolis.

Verificam-se os valores dos parâmetros Pico do Ez e Tempo de Captação do Sinal para este evento (flash5), nas duas localidades indicadas (Belém e Ulianópolis), que foram mostrados nas Tabelas II e IV, respectivamente. E como todas as descargas atmosféricas simuladas tiveram sempre a mesma corrente na base do canal de descarga e ao longo deste canal, o valor do "Tempo de Subida do Pulso" para as distâncias envolvidas foi sempre de 0,5µs, como já havia sinalizado o gráfico da Figura 5.e.

V. CONCLUSÕES

Pelo exposto neste artigo pode-se concluir que ao considerar a velocidade de propagação da onda eletromagnética, originada a partir de um evento de descarga atmosférica, igual à velocidade da luz no vácuo (3x10⁸m/s), estão sendo subestimadas as grandezas dos parâmetros Valor de Pico da Onda e Tempo de Deteccão do Sinal da onda propagada, pois os resultados mostraram um aumento médio de 6.6% e 26,8%, respectivamente, quando se considerou uma redução de aproximadamente 3% nesta velocidade $(2,9x10^8 \text{ m/s})$. Isto é relevante, principalmente para o segundo parâmetro, pois a este ainda é somado o aumento de tempo proveniente do deslocamento da onda propagada até o sensor com a velocidade menor, conforme demonstrado na Tabela VII comparada à Tabela VI. Uma das consequências disto é ter a "janela de coincidência" mal dimensionada no servidor central a ponto de se perder o registro do evento de um determinado sensor da rede de detecção de raios. Por exemplo, supondo que os tempos do transporte dos dados dos sensores até a central de processamento sejam próximos a ponto de adotar-se o mesmo para todos eles (suposição bastante otimista), pode-se traçar a linha de tempo considerando apenas o Tempo Total detalhado nestas tabelas. Assim, para o evento flash5 a Figura 7 abaixo ilustra de forma qualitativa (sem escala) a janela de tempo deste evento para velocidade igual a c (linha tracejada vermelha). E caso a mesma fosse aplicada considerando a mudança para a velocidade c' a detecção do sensor em Braganca não seria contabilizada. Portanto, caso o algoritmo de localização do servidor central não considere esta característica local, haverá uma perda na eficiência de detecção de todo o sistema [13].

Fig. 7. Janela de Tempo para o evento flash5 com velocidade c comparada à situação com velocidade c'.

Assim como foram feitas simulações considerando alteração na velocidade de propagação da onda irradiada, na ferramenta desenvolvida podem-se verificar ainda outras características do fenômeno descarga atmosférica, como, altura do canal de descarga H ou velocidade da corrente de retorno v neste canal, para melhor entendimento das especificidades locais.

REFERÊNCIAS

- C. R. de Mesquita, Nova Metodologia para Calibração de Sistemas de Localização de Descargas Atmosféricas, Tese de Doutorado, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Dezembro, 2006.
- [2] Global Atmospherics (GAI), *LP2000 Lightning Processor User's Guide*, pp. 7-22 – 7-25, 1999.
- [3] S. V. Filho, Descargas Atmosféricas: uma abordagem de engenharia, Artliber Editora Ltda., 1ª Edição, São Paulo, 2005.
- [4] C. A. Nucci, M. A. Uman, G. Diendorfer, F. Rachidi, M. Ianoz, C. Mazzeti, *Lightning Return Stroke Current Models with Specified Channel-Base Current: A Review and Comparison*, Journal of Geophysical Research, Vol. 95, nº D12, pp. 20,395-20,408, Nov. 20, 1990.
- [5] H. Heidler, Lightning Electromagnetic Impulse. Theorie und Messungen, Ph. D. Thesis, Fakultät der Elektrotechnik, Universität der Bundswehr, München, 1987.
- [6] K. Berger, R. B. Anderson, H. Kröninger, V. Palva, *Parameters of Lightning Flashes*, Electra, nº 41, pp 23-37, July, 1975.
- [7] C. Leteinturier, C. Weidman, J. Hamelin, *Current and Electric Field Derivatives in Triggered Lightning Return Strokes*, Journal of Geophysical Research, Vol. 95, pp. 811-828, 1990.
- [8] M. A. Uman, D. K. McLain, *Magnetic Field of Lightning Return Stroke*, Journal of Geophysical Research, Vol. 74, nº 28, pp. 6899-6910, 1969.
- [9] M. J. Master, M. A. Uman, Transient Electric and Magnetic Fields Associated with Establishing a Finite Electrostatic Dipole, American Journal of Physics, Vol. 51, nº 2, pp. 118-126, February, 1983.
- [10]M. Rubinstein, M. A. Uman, Transient Electric and Magnetic Fields Associated with Establishing a Finite Electrostatic Dipole, revisited, IEEE Trans. on Electromagnetic Compatibility, Vol. 33, nº 4, pp. 312-320, November, 1991.
- [11]T. X. Song, C. Wang, Two Numerical Methods for Calculating Electromagnetic Fields Radiated from Nature Lightning, Journal of Electromagnetic Waves and Applications, Vol. 19, n° 4, pp. 513-528, 2005.
- [12]F. Romero, Avaliação do Comportamento dos Campos Eletromagnéticos Gerados por Descargas Atmosféricas Nuvem-Terra, Dissertação de Mestrado, Programa Interunidades de Pós-Graduação em Energia, Universidade de São Paulo, Fevereiro, 2007.
- [13]K. P. Naccarato, Análise das Características dos Relâmpagos na Região Sudeste do Brasil, Tese de Doutorado, Curso de Pós-Graduação Geofísica Espacial, Instituto Nacional de Pesquisas Espaciais, Julho, 2005.