APLICAÇÃO DO AMBIENTE ALICE PARA ENSINO DE LÓGICA PARA ALUNOS INCIANTES EM CURSOS DE PROGRAMAÇÃO

Nogueira, Kenedy¹; Nogueira, Keila²; Lamounier, Edgard¹; Cardoso, Alexandre¹

¹ Universidade Federal de Uberlândia (UFU) ²Instituto Federal do Triângulo Mineiro (IFTM)

prof.kenedy@gmail.com, keilanogueira@iftm.edu.br, {lamounier,alexandre}@ufu.br

Resumo - Este artigo descreve a experiência de implantar tecnologias auxiliares afim de estimular o aprendizado de alunos de graduação em lógica e algoritmos.

Abstract - This article describes the experience of deploying assistive technologies in order to stimulate learning of undergraduate students in logic and algorithms.

Palavras-Chave – Ensino de programação, Lógica de programação, Realidade virtual.

I. INTRODUÇÃO

No Brasil segundo estimativas hoje são mais de 100 milhões de computadores em uso [2], segundo a FGV, 95% das empresas brasileiras possuem computador[3]. A difusão da Internet está diretamente associada ao crescimento do computadores, que têm suas vendas impulsionadas pelos seguintes fatores: aumento do poder aquisitivo, crescimento do emprego formal e do acesso ao crédito, avanço da tecnologia, baixa do dólar e isenção de PIS e COFINS sobre a venda de computadores e seus componentes. O uso de computadores está em franco crescimento, isso gera a necessidade de formação de novos profissionais para desenvolverem sistemas computacionais. Contudo um dos grandes desafios enfrentados e a dificuldade dos alunos dos cursos na área de sistemas de informação, engenharia de computação é com lógica, algoritmos e o aprendizado da primeira linguagem de programação.

O uso de técnicas associativas ou lúdicas é uma possibilidade estimular e facilitar a assimilação tanto da lógica quanto das principais estruturas e funções usadas em desenvolvimento de softwares. Este trabalho tem como objetivo testar ferramentas em desenvolvimento e avalia lá a fim de buscar incentivar os alunos em seus primeiros anos de graduação e

enferência de Estudos em Engenharia Elétrica

XI CEEL – ISSN 2178-8308 25 a 29 de novembro de 2013 Universidade Federal de Uberlândia – UFU Uberlândia – Minas Gerais – Brasil desestimular o abandono dos cursos. O sistema educacional brasileiro possui um grande número de estudantes que iniciam um curso universitário, mas não conseguem obter êxito em cumprir as exigências curriculares e se graduar. A evasão dos alunos que não completam o curso de graduação se configura como um dos grandes problemas que ocorre em instituições públicas e particulares [1].

II. ESTADO DA ARTE

Alguns softwares com fins pedagógicos no ensino de programação são apresentados de forma sucinta abaixo.

Alice

Alice permite a construção de animações e jogos lúdicos através de blocos que são arrastados e organizados em um ambiente de programação que refletem no ambiente 3D, essa característica em um primeiro momento exercita a construção de algoritmos por experimentação onde o aluno "brinca" e tem o feedback visual de suas ações, assim que os mesmo assimilam as funções e estruturas de programação aprendendo programação e ainda abstraindo conceitos de Programação Orientada a Objetos.

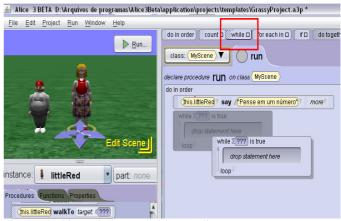


Fig. 1. Ambiente de desenvolvimento Alice

Greenfoot

O *Greenfoot* é um programa que suporta o desenvolvimento de aplicações gráficas na linguagem de programação Java. A idéia desta ferramenta é ajudar iniciantes nesta linguagem

orientada a objetos a desenvolverem programas de forma fácil e assim aprimorarem seu conhecimento na linguagem enquanto o utilizam.

O programa permite implementar e interagir com objetos na forma de cenários e alguns destes já vem disponíveis com o programa. Uma vez que estes objetos estejam sendo desenvolvidos, eles podem ser colocados em um mundo do *Greenfoot* e os desenvolvedores podem interagir diretamente com eles de forma a chamar seus métodos.

O *Greenfoot* trabalha com um *framework* que pode ser utilizado para criar vários programas em um plano bidimensional. A idéia principal desta ferramenta é ser pedagógica, tornando fácil a criação de representações gráficas para objetos e controles como *loopings, start, stop*, etc.

III. METODOLOGIA DE TRABALHO

A fim de obter resultados comparativos sobre a eficácia da ferramenta 3 professores que já ministravam as disciplinas de introdução a programação, lógica de programação e programação orientada a objetos preparam aulas usando o software Alice seguindo o mesmo conteúdo e sequência convencional como exemplos fez-se o uso de algoritmos clássicos como:

• Fibonacci [11]

$$F(n) = \begin{cases} 0, & \text{se } n = 0; \\ 1, & \text{se } n = 1; \\ F(n-1) + F(n-2) & \text{outros casos.} \end{cases}$$

• Fatorial [11]

$$n! = \prod_{k=1}^n k \qquad \forall n \in \mathbb{N}$$

O programa Fatorial implementado em Alice pode ser observado Figura 2 abaixo.

```
while [again] == 1] is true
 Integer number (his.samura) getIntegerFromUser (Enter the number:
if ∑<mark>Snumber | ≤ $12 |</mark> is true then
  if ☐number ≤ €0.0 is true then
   factorial_result = 1
     (Integer) (Integer) (Integer)
     while 🗐 ≤ Enumber | is true
      Sactorial_result = Sactorial_result * ST
      (i) (c + 163 - 62)
   Integer tmp (this.samura) getIntegerFromUser (Do you want to play again? (0/1))
   factorial_result (= 1)
  Sagain 🖛 Etmp 🗸
   (this.samura) say /(This is too much for me!), duration: =2.0 more
   (this.samura) turn [LEFT], [1.0] more
   (this.samurai) fallDown more
  again 🖛 🗐 🗸
```

Fig. 2. Fatorial implementado em Alice

Dois tipos de avaliações foram realizadas uma sobre o conhecimento adquirido e outra seguindo a *ISONORM 9126-1* que avalia alguns pontos como ergonomia de software, confiabilidade, usabilidade e outros.

Fig. 3. Aluno desenvolvendo em Alice

IV. RESULTADOS

Serão discutidos os resultados das avaliações realizadas, primeiramente em termos de aprendizado, comparado com turmas com aulas em estilo clássico pode-se notar um aumento percentual nas notas na media de 10% contudo no aspecto de estimulo ao curso que realmente os resultados foram sensíveis o que pode ser visto nos gráficos de:

• Sobre o sistema visto na Tabela 01 e gráfico 01.

Tabela 01 - Sobre Usabilidade

2. USABILIDADE- Evidência a facilidade de utilização de software	Muito Satisfeito	Satisfeito	Insatisfeito
2.1. Em relação à facilidade de entender com funciona o programa			
2.2. Quanto à manipulação dos objetos da biblioteca (facilidade de uso)			
2.3. Quanto à personalização dos objetos "personagens" (facilidade de uso)			
Quanto à programação (facilidade de uso ou complexidade)			
2.5. Como avalia globalmente a usabilidade do software.			

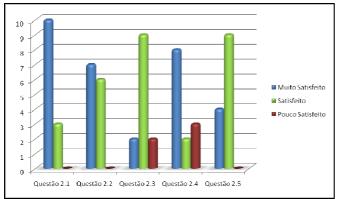


Gráfico 01 - Resultado da avaliação da Tabela 1

Sobre o sistema visto na Tabela 02 e gráfico 02.

Tabela 02 - Sobre o sistema

Tabela 02 Sobre o sistema				
6. Sobre o Sistema – Metrifica o sistema em um contexto de disciplina e conteúdo.	Muito Importante	Importante	Não é importante	
6.1. A importância que atribui ao software para o aprendizado em geral.				
6.2. A importância programar em Ambientes em Realidade Virtual				
6.3. A importância de programar em blocos				
6.4. A importância geral do sistema na disciplina (lógica de programação e POO)				

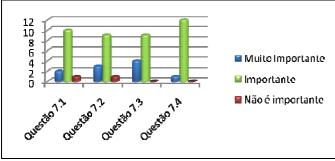


Gráfico 02 - Resultado da avaliação da Tabela 2

 Avaliação de desempenho do aluno visto na tabela 03 e gráfico 03.

Tabela 03 - Avaliação do usuário

7. Avaliação de Desempenho – Avaliação do usuário sobre seu desenvolvimento em programação usando Alice.	Experiente	Intermediário	Iniciante
7.1. Qual seu nível de programação em Java antes da disciplina			
7.2. Qual sua experiência em Programação Orientada a Objetos antes da disciplina			
7.3. Qual seu nível de programação em Java depois da disciplina			
7.4. Qual sua experiência em Programação Orientada a Objetos depois da disciplina			

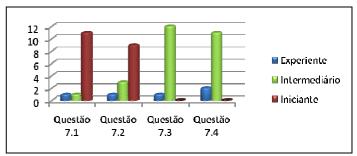


Gráfico 03 - Resultado da avaliação da Tabela 2

Como observado na avaliação com alunos a aceitação da ferramenta é grande e desperta o interesse dos alunos pela lógica uma vez que tira a mesma do foco principal de estudo e foca na criação de jogos e animações que são mais lúdicos e prendem mais a atenção dos alunos contudo dependendo totalmente da lógica para sua criação.

Fig. 4. - Relacionamento entre usuário/aluno Alice e área de conhecimento em lógica

V. PROJETOS FUTUROS

Como proposta de trabalhos futuros a implantação de uma disciplina optativa de lógica de programação utilizando exclusivamente Alice. Divulgar a ferramenta para escolas de 2º grau que façam uso de informática em seus currículos. Escrever um livro sobre programação em Alice a partir da apostila já criada. Fortalecer o laço de cooperação entre a universidade de *Carnegie Mellon[6]* criadora da ferramenta, reportando os problemas e peculiaridades brasileiras.

VI. REFERENCIAS

- [1] INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (2009) "Investimentos Públicos em Educação", http://portal.inep.gov.br/estatisticas-gastoseducacao e "Censo da Educação Superior",
- http://portal.inep.gov.br, Outubro, 2009.
- [2] Globo "Média é de 1 máquina para cada 3 habitantes, diz estudo da FGV. Índice pode chegar a 100 milhões em 2012", 26/05/09 12h50 Atualizado em 26/05/09 13h01. http://g1.globo.com/Noticias/Tecnologia/0,,MUL1167875-6174.00.html
- [3] CETIC, "Uso das Tecnologias da Informação e da Comunicação", 2012.

http://www.cetic.br/empresas/2011/index.htm

- [4] Kölling, Michael (2010). "The Greenfoot Programming Environment" (PDF). ACM Transactions on Computing Education (TOCE) (ACM) 10 (4). doi:10.1145/1868358.1868361.
- [5] Herbert, Charles W.; "An Introduction to Programming Using Alice", ISBN 1-4188-3625-7
- [6] Alice, site oficial Alice, Alice 2.x © 1999-2013, Alice 3.x © 2008-2013, Carnegie Mellon University. http://www.alice.org/index.php?page=what_is_alice/what_is_alice
- [7] PONZ, V. C.; CAETANO, D.; MATTIOLI, Fernando; NOGUEIRA, Kenedy Lopes; LAMOUNIER JÚNIOR, E. A.; CARDOSO, A. . Comparison of neural networks applied to augmented reality for upper limb prosthesis simulation. In: Workshop de Realidade Virtual e Aumentada, 2011, Uberaba. WRVA 2011, 2011. v. 1.
- [8] CHAGAS, Keila de Fatima; NOGUEIRA, Kenedy Lopes; LAMOUNIER JÚNIOR, E. A.; CARDOSO, Alexandre. **Uma arquitetura para distribuição de realidade virtual e aumentada.** In: WRVA 2009, 2009, Santos-SP. VI Workshop de Realidade Virtual e Aumentada. Santos-SP: Unisanta, 2009. v. 1.
- [9] SOARES, Alcimar; LAMOUNIER JÚNIOR, E. A.; LOPES, Kenedy; ANDRADE, A. . AUGMENTED REALITY: A TOOL FOR MYOELECTRIC PROSTHESES. In: ISEK 2008, 2008, Niagara Fall, Canada. XVIIth Congress of the International Society of Electrophysiology and Kinesiology, 2008. v. 1.
- [10] NOGUEIRA, Kenedy Lopes ; CARDOSO, Alexandre ; LAMOUNIER JÚNIOR, E. A. . **Upper limb prostheses trainning using augmented reality**. In: AIPR-2007, 2007, Orlando. Proceedings of the 2007 International Conference on Artificial Intelligence and Pattern Recognition. Worthington: ISRST, 2007. v. 1. p. 451-456.
- [11] Sigler, Laurence E. (trans.). "*Fibonacci's Liber Abaci'*". [S.l.]: Springer-Verlag, 2002. ISBN 0-387-95419-8 Chapter II.12, pp. 404–405.