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Abstract - During the rehabilitation process, 

individuals who have experienced a total or partial loss of 

upper limbs are exposed to many risks. Besides this, a 

great mental effort is required during the training phase 

to adapt to a real prosthesis. In many cases, the use of 

Virtual Reality in Medicine has proven to be an excellent 

tool for evaluation and support as well as to mitigate risk 

and to reduce mental effort required. In order to be 

useful, virtual prosthesis must have a great similarity 

with the real world. For this reason, artificial neural 

networks have been explored to be applied in the training 

phase to provide real time response. The objective of this 

study is to compare the performance of the LVQ and 

MLP neural networks in EMG (muscle activity) pattern 

recognition. To achieve this, different feature extraction 

techniques for simulation and control of virtual 

prostheses are investigated. 
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I. INTRODUCTION 

A prosthesis is a device that aims to recover an amputated 

limb function. The electromyographic signal (EMG), 

collected in the remaining muscles of the amputated limb, 

can be used to control myoelectric prosthesis. The EMG 

signal is an electric potential produced by a particular muscle 

contraction. By processing the EMG signal, it is possible to 

discriminate different upper limb movements. This 

application has become an important human-machine 

interface in many areas, such as prosthesis control (on-off 

and proportional), robotic hands control, and Force Display 

Devices (FDD) control in Virtual Reality (VR) environments 

[1]. Due to the its stochastic nature, pre-processing 

techniques (section B and C) capable of extracting EMG 

signal information are required before signal classification. 

Artificial neural network (ANN) are systems that can 

recognize and classify patterns, such as EMG, from a 

learning model based on human learning [2]. A striking 

feature of ANN is its capability of generalization, after a 

training stage in which some input patterns are presented and 

processed by the network. In the execution stage, different 

                                                           

 
 

patterns from those used in training stage may be processed 

properly by the network. 

The use of VR techniques by myoelectric prosthesis in 

their training stage presents itself as a complementary tool 

that favors adaptation to artificial limbs [3]. VR techniques 

also enable performance evaluation of different control 

systems, ease wear during the training, and provide a good 

visual feedback [4]. Many authors have investigated the use 

of EMG signal in upper limb and prosthesis control: Huang 

et. al [5], Sebelius et. al [4] and Pons et. al [6]. They 

discussed the question around hands prosthesis control whilst 

Herle et. al [3], Nogueira et. al [7] and Soares et. al [8] 

treated the virtual arm control. EMG signal classification, 

pattern recognition, feature extraction, real-time signal 

processing, and realistic prosthesis simulation are among the 

main challenges faced by these authors. 

This paper presents a comparative study of two classifiers 

using different feature extraction techniques. The main 

objective is to provide, during training stage, a better 

prosthesis control to the individuals who have experienced 

upper limbs lost. 

II. MATERIALS AND METHODS 

Feature extraction techniques presented in section C will 

be applied in each movement database. The database consists 

of hand movement investigated by Mattioli et. al [9] and arm 

movement, investigated by Soares et. al [8] and Nogueira et. 

al [7]. Five replicates were used for each movement: arm 

(isometric / isotonic contraction) and hand (isometric 

contraction). This movements will be used to generate the 

basics training patterns that will feed the LVQ and MLP 

neural networks. All patterns will be used during the training 

phase and application, since it is a virtual prosthesis for a 

single patient. 

Configuration parameters of each neural network, such as: 

learning rate, learning rate decrease, tolerance, number of 

outputs units, number of hidden layer neurons and 

momentum, will be variated. In order to evaluate each 

network classification performance, efficiency (Equation 1) 

and training time will be computed for each different 

configuration. 

 

 

 

The desktop configuration used to run these tests is: 

 Operational system: Ubuntu Linux, 10.04(kernel) 

2.6.32; 

 RAM 2Gb; 

 Intel(R) CoreTM 2Quad E4700, 2.6GHz Processor; 
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A. System architecture 

 

Figure 1 shows the structure proposed in the following, all 

process stages will be detailed. 

 

 
Fig. 1.  System architecture. 

 

The collection and transmission of samples are performed 

in “Data collection” stage, which are sent by socket to 

another block responsible by the “Processing”. 

All tasks related with samples processing are detailed in 

sections B, C and D. 

B. Signal windowing 

 

The first phase to be executed in the “Processing” stage is 

“Samples acquisition”. Teager's energy operators (TEO), a 

real-time boundary detector method created by Peretta [10] 

and used by Mattioli et. al [11], will be applied to all samples 

received to extract only the significant parts of the signal. 

Once the relevant signal extracted it is divided into segments 

of each samples, similar to the procedure realized by Herle 

et. al [3].  

C. Feature extraction 

 

In order to reduce the amount of information to be 

presented to neural networks, two techniques of features 

extraction for each segment are presented: Time-domain 

features (TDF), used by Herle et. al [3], and Hudgins et. Al 

[12]; and autoregressive model (ARM), studied by Soares et. 

al [8]. 

1) TDF - Five features were defined: Mean Absolute 

Value (MAV), Mean Absolute Value  Slope (MAVS), Zero 

Crossing (ZC), Slope Sign Changes (SSC) and Waveform 

Length (WL) [12] [3], all of those are calculated within each 

segment of 40 samples. 

2) ARM - This is a representation of a specific signal 

which depends solely on the output values previously stored 

by the system. The  variable value in a specific time of a 

ARM may be estimated from some previous variable values 

(y(n-1), y(n-2), ...). An ARM is defined by Equation (2) [8] 

and it is applied to each segment of 40 samples. 

 

 

 

Where:  is a estimated value at time  is 

autoregressive (AR) coefficient of order  calculated for 

each samples within each segment; is an estimated error; 

and the order of ARM which determines the number of 

coefficients . 

D. Classification technique 

 

The feature vectors will be present to neural networks as 

an input. If TDF technique is used, only five features will be 

presented at a time for the network for each segment. 

Moreover, if ARM is used each sample will be represented 

by  numbers of AR coefficients, i.e.,  coefficients 

for each segment (of 40 samples) will be presented for the 

network. 

After presenting the feature vector to each of the chosen 

networks, there's the classification of which movement that 

feature vector represents. 

Two networks  LVQ (Learning Vector Quantization) 

and MLP (Multi Layer Perceptron)  with one hidden layer 

were chosen, considering that the work performed by Soares 

et. al [8] and Mattioli et. al [11] achieved a satisfactory 

performance. 

Details on the classification techniques used are described 

by Mattioli et. al [9] [11]. 

E. Training environment prototype 

 

The GUI of the training environment, is showed in Figure 

2, in which the network training settings can be adjust.  

A virtual prosthesis model was developed using 3Dstudio 

Max® [13] and after exported to Blende3D™. The GUI and 

3D model are initiated at the same time. After three feature 

vectors correct classification by the network, a message is 

sent by pipeline to Blender that triggers an animation of the 

virtual upper limb prosthesis: The virtual prosthesis 

movements are: hand movements (extension, flexion, 

grasping and forearm pronation) and arm movements ( elbow 

flexion, extension and forearm pronation, supination). 
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Fig. 2.  GUI of the training environment. 

 

F. Testing methodology 

 

A single parameter will be variated at time, in order to 

understand its impact on results. The range of each parameter 

is described below: 

1) Standard settings: 

 LVQ Network: learning rate=0.1, reduce learning 

rate=0.5, and tolerance=0.01;  

 MLP Network: learning rate = 0.1, tolerance=150, 

momentum 0.5 and number of neurons in hidden layer = 

20; 

2) Variable settings: 

 LVQ Network: 

o Outputs units: The maximum percentage of output 

units will be up to 90% of the total (TDF-hand and 

arm) patterns, 22% of the total (ARM-hand) patterns 

and 11% (ARM-arm) patterns, learning rate and 

reduce learning rate 0.1 to 0.99 and tolerance is 0.01 

to 0.099; 

o The number of repetitions for each test parameter is 

changed is:  TDF:, 100 repetitions;  ARM: 

(3
rd

,4
th

,6
th

,8
th

 and10
th

 order), 25 repetitions. 

 MLP Network: 

o Learning rate: 0.1 to 0.7; tolerance: 100 to 300; 

number of neurons in hidden layer: 1 to 30; 

o 100 repetitions will be performed for each 

parameter variated, independent of the used feature 

extraction technique; 

 

III. DISCUSSION 

From the LVQ network performed tests follows that: 

Using TDF for hand movements has reached 97% of 

efficiency with only 72% of the training patterns. Using TDF 

for arm movements has reached a maximum of 80% of 

efficiency. Using the ARM for hand movements has reached 

99% efficiency with only 11% of the training patterns as 

shown in Figure 3, and 97% efficiency for arm movements 

with only 10% of all training patterns. 

 

 
Fig. 3.  LVQ network efficiency tests for isometric 

contractions of hand movement using ARM  

 

The margin error of 20% for the arm movements increases 

the probability of error in the classification of the movement 

performed. Figure 4 illustrates an unacceptable feedback for 

a virtual training environment.  

 

 
Fig. 4. Wrong visual feedback due to Neural network 

classification 

 

Figure 5 shows the correct virtual movement due to high 

network efficiency. 

 

 
Fig. 5.  Right visual feedback due to Neural network 

classification 
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The training time using TDF in both cases did not reach a 

second. The training time for an 3
rd

 order ARM was 27 

seconds. 

 
 

Fig. 6.  LVQ network training time tests for isometric 

contractions of hand movement using ARM 

 

In tests with MLP network performance rating above 85% 

was not observed for hand movements, and the average 

training time was 100 seconds, as shown in Figure 7 and 8. 

 
Fig. 7.  MLP network efficiency tests for isometric 

contractions of hand movement using TDF 

 
Fig. 8. MLP network training time tests for isometric 

contractions of hand movement using TDF 

Results as the ones obtained in the MLP network to hand 

motions using TDF, and results for LVQ using ARM arm 

movements, are not suitable for controlling virtual prosthesis, 

since the error rate is too large. 

 

IV. CONCLUSIONS AND FUTURE WORK  

Machover [14] states that VR systems need to provide a 

consistent reaction to the user's movements, making the 

experience consistent. This emphasizes the importance of 

studying methods and techniques for increasing the 

efficiency of pattern recognition techniques, in order to have 

a correct classification of movements performed by the 

patient. 

The results presented assert that the LVQ using ARM is a 

good alternative for controlling virtual prosthesis for upper 

limbs (arm and hand movements). This is an  bright spot of 

this work, considering that all previous work tried to simulate 

only one movement at a time. In Soares et. al [8] it was 

necessary 50% of the training patterns to achieve the 

efficiency of 100%; and this work achieved the same only 

10% of the training pattern.  

Neural networks are often used for pattern recognition of 

EMG signals. Their efficiency depends on the used pre-

processing technique and the way the signal is captured.  

As a future work, the authors will perform a new data 

capture of hand movements signal with a greater number of 

capture channels and repeat the tests in MLP network using 

TDF. 
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