
CEEL - ISSN 2596-2221
Universidade Federal de Uberlândia

06 a 10 de Dezembro de 2023

JITTER-FREE AND PORTABLE HARDWARE PWM SOLUTION FOR
EMBEDDED LINUX DEVICES

Vinícius Freitas Rodrigues*1 and Éder Alves de Moura2

1,2FEELT, Universidade Federal de Uberlândia

Abstract - An architecture in increasing adoption for the
development of larger embedded applications is the use of
Linux systems. Such system appears as a basis for the de-
velopment of software applications. This choice is justified
by the practicality of accessing the software resources nat-
urally made available by the system, such as the possibility
of using different programming languages, network com-
munication protocols and graphical interfaces. In addi-
tion, Linux is an open source platform and without licens-
ing costs. However, the use of an Operating System, whose
kernel is not real-time, can make the execution of some of
its functions unfeasible, due to the non-preemptibility in
scheduling tasks. In this sense, this work presents a study
on the generation of Pulse Width Modulation (PWM) sig-
nals. The adopted approach uses an external chip, in addi-
tion to the microprocessor containing the Operating Sys-
tem. The proposal consists of evaluating the PWM sig-
nal being generated using an IC dedicated to PWM gen-
eration, model PCA9685, through the development of an
external board, connected to the Linux device via Inter-
Integrated Circuit (I2C). The obtained results indicated
that the proposal was able to generate PWM signals with
stable frequency and duty cycle, however with a bias in the
frequency value, later corrected via software.

Keywords - PWM generation, embedded Linux,
PCA9685, C++ library, Raspberry Pi.

I. INTRODUCTION

The embedded Linux environment brings the possibility of
using high-level frameworks in comparison with the standard
bare-metal embedded system. It is suitable for building multi-
domain applications such as with robotics, navigation algo-
rithms, user graphical interfaces and complex control imple-
mentations.

The problem is that the most of these applications are real-
time constrained, but Linux, traditionally, is not a real time
operating system. The multitasking in an operating system
is achieved using a scheduler, the program that decides the
tasks priority and rapidly switches between programs. The
most Linux schedulers are optimized for performance, unlike
a Real-Time Operating System (RTOS), which prioritizes pre-

dictability [1].
This aspect of the Linux scheduler makes its processes non-

deterministic. Lack of determinism directly affects resources
like the Pulse Width Modulation (PWM) signals generated by
software, causing the signal’s frequency and duty cycle to be
unstable [2].

By definition, the pulse width modulation consists in data
transmission through the variation of a square wave signal
width. This information travels on the signal accordingly with
the duty cycle, which is the ratio between the signal’s period
and the high logic pulse width [3]. As the carrier wave’s pe-
riod in the modulation is constant, this signal strongly depends
on timing.

A reference timing digital signal, as a PWM wave, has a
fixed period that does not varies over time. However, in the
non-ideal world, all the signals show small variations. These
variations in phase position, period and duty cycle, shown in
Figure 1, are called jitter [4].

This PWM signal variation, if substantial, can affect real
time applications. Many applications may be impaired by
PWM jitter, for example, digital control systems, motion con-
trol and switching-mode power converters.

Figure 1: Timing signal with jitter.

Perfect reference 
timing signal

Timing signal 
with jitter

Jitter

On traditional operating systems, such as the Linux, the
lack of preemptibility of the kernel implies that the tasks pro-
cessing order are not based on timing. In this context, if a
PWM signal is generated by software in a reserved task, the
operating system must not process its task on a predictable
timing.

One approach for solving this problem is the implementa-
tion of the PWM using low level drivers. An example is the
ServoBlaster, a kernel driver that implements a low level ser-

*vinicius.freitas@ufu.br

1



vomotor control interface for the Raspberry Pi [5]. The driver
works using the Direct Memory Access (DMA) controller to
generate the signal and the PWM peripheral just to set the
pulse width in a way that delays are more accurate. Although
elegant, this solution is hardly portable, since the DMA pe-
ripheral depends on the System-on-Chip (SoC) processor ar-
chitecture.

Another approach is using an external hardware to generate
the signals. In [2], for example, an external hardware mod-
ule is used to create the signals. The board, named Navio2,
is an open-source drone controller designed for the Rapberry
Pi, and the PWM is created through a STM32 microcontroller
embedded in its hardware. In this solution, a Python module
was implemented to be the interface on Raspberry Pi’s side.
This strategy allows the integration with the some of the em-
bedded Linux high level frameworks: ROS (Robot Operating
System) and ArduPilot.

Figure 2: Scheme of the solution proposed by this work.

SBC with embedded Linux

Board with a
PCA9685 chip

I²C

I2CDevice library (C/C++)

pca9685 library (C++)

User application (C++)

Adopting a strategy similar to that developed in [2], this
work proposes a solution for generating a reliable PWM signal
for an embedded Linux running on a Single-Board Computer
(SBC), using an external hardware, the PCA9685. Further-
more, the interface with the signal generator chip was made in
such a way to be portable across different hardware set-ups.
Since the PCA9685 is a low price chip, it can also be done
with an affordable hardware. The whole system architecture,
proposed in this work, is shown in Figure 2.

II. DEVELOPMENT OF THE HARDWARE
SOLUTION FOR GENERATING PWM SIGNALS

This section discuss about the hardware platform and its
characteristics in the following subjects: the PCA9685 chip,
the C++ interface library and the output circuit drivers.

A. The PCA9685 chip

In this work, the adopted external hardware for driving the
PWM signals is the NXP Semicondutor’s PCA9685. This chip
is a dedicated IC for PWM signal generation, with 12-bit pre-
cision and an I2C interface [6]. The IC was originally designed
to be a LED controller, but its usage extends to most PWM
driven circuit.

The PCA9685 have a simple register map, where a few reg-
isters menages all the chip configurations and the most of them
are for controlling the 16 PWM channels. Each channel has
four 8-bit registers that control their time in high or low logic
level. Two of them, LEDn_ON_L and LEDn_ON_H, rep-
resent the least significant bits and the most significant bits,
respectively, of the value holding the time the output must
go ON. Similarly, the other two registers, LEDn_OFF_L and
LEDn_OFF_H, represent the value holding the time the output
must go OFF [6]. Thus, both the duty cycle and phase shift of
the signal can be configured, as seen in Figure 3.

Figure 3: Example output signal on a LEDn pin.

0 04095 4095

1228

409

1228

409LEDn_ON

LEDn_OFF

LED ON

LED OFF

If the integrated circuit has an architecture made of 8-bit
registers, then some of the bits in LEDn_ON and LEDn_OFF
aren’t used for value storage. For example, LEDn_ON_H and
LEDn_ON_L have 8 bits each, but only 12 are used for stor-
ing the LEDn_ON time value. It happens because the registers
[7:5] of LEDn_ON_H are reserved (read only) and the bit 4 is
the FULL_ON bit. When the bit 4 is set, the channel output
must always be in high logic level, no matter the value stored
in the 12 bit value. These registers are presented in Figure 4.

The LEDn_OFF registers also follow the same operation
scheme. The most significant bits of a LEDn_OFF have
three reserved bits and a FULL_OFF. When the bit 4 of the
LEDn_OFF_H is set, then the channel output must always be
in low logic level, no matter the value stored in the 12 bit value.
If the the FULL_OFF and the FULL_ON bit in the same chan-
nel are set, then LEDn_ON is ignored and the output remains
in the low logic level.

The methods later implemented for enabling and disabling
channels or controlling the PWM outputs are based on these
LEDn registers characteristics.

Figure 4: LEDn_ON register structure. LEDn_OFF follows the same
model.

Two other important registers are the MODE1 and the
MODE2. Each bit in these registers configures a different
PCA9586 feature. Some of these bits must always be con-
figured before using the PWM, otherwise the signal may not
be generated properly.

The minimal configuration comprises resetting the SLEEP
bit (bit 4) of MODE1 and configuring the output pin topology
in the OUTDRV bit (bit 2) of MODE2. If the sleep bit is set,
then the internal oscillator is turned off, and so the PWM can-

2



not operate. In addition, the output drive of the PWM pins
must be set "totem-pole" (1) or "open-drain" (0) depending on
the user’s application.

Finally, the last essential configuration for every applica-
tion is defining the PWM frequency. It can be done by setting
a value in the PRE_SCALE register. The prescale value must
be set according with the desired output frequency. This value
can be determined with the formula shown in equation 1:

prescale_value = round
(

osc_clock
4096× f requency

)
−1 (1)

The oscillator’s clock frequency is 25Mhz, if the internal
PCA9685’s oscillator is being used. External clock can also
be supplied on the EXTCLK pin (pin 25 on TSSOP chip, or
22 on HVQFN chip). To use the external clock feature the bit
6 in the MODE1 register must be set. The prescalar can only
be changed with the chip in sleep mode.

B. Interfacing the PCA9685 with a C++ library

The library 1 implements a class that wraps the PCA9685
features [7]. Since the PCA9685 interfaces with the operat-
ing system using the I2C protocol, the IC class is inherited
from the I2C device template. Inheriting this template class,
a PCA9685 object have access to the I2CDevice methods to
perform reading or write on the bus [8].

This object-oriented approach simplifies wrapping new I2C
devices with C++ classes. It could be extended to many other
devices similar to the PCA9685.

To create an object of a PCA9685 class, it is only necessary
specify the I2C bus number of the Linux device and the I2C
slave address as arguments. It is important to point out that the
PCA9586’s address is configured by hardware using a specific
set of pins [6].

The configuring methods, like the one in Figure 5, used to
set or reset MODEx bits, follow a characteristic code template.
At first, the MODEx register is read and stored in a variable.
Then, depending on the user’s choice a bit is set or cleared in
the right position. The bit position depends on the method and
which configuration bit it is supposed to change. Then, the
variable is written on the bus using a I2CDevice class method.
For example, the inverting logic feature is enabled or disabled
by setting or resetting the MODE2’s bit in 6th position.

Figure 5: Example of a configuration method.

void pca9685 :: set_output_inverting(bool invert ){
unsigned char mode2;
mode2 = this ->readRegister(PCA9685_MODE2 );
invert? (mode2|= 1UL << MODE2_INVRT) :

(mode2 &= ~(1UL << MODE2_INVRT ));
this ->writeRegister(PCA9685_MODE2 , mode2);
}

To enable the PWM channel n, the user must call a function
that resets the bit 4 in the LEDn_ON_H register. Only after
calling this enable_channel method, the user is capable to set
the desired duty cycle.

Although the chip allows configuring both phase shift and
duty cycle, the library was implemented just to control the
second one. Controlling the PWM signal’s duty cycle al-
ready satisfies the most of the applications. The library im-
plements the pulse width control modifying only the values
on the LEDn_ON registers. This is done by writing the
eight LSBs of the unsigned short duty_cycle variable in the
LEDn_ON_L and the four variable’s MSBs in the bits [3:0] of
the LEDn_ON_H. This implementation was possible by using
an unsigned char pointer and pointer casting. A part of the
method is presented in Figure 6.

Figure 6: Piece of code that writes the PWM duty cycle properly in
PCA9685 registers.

unsigned char* led_on_p;
led_on_p = (unsigned char*) &duty_cycle
this ->writeRegister(PCA9685_PWM_CH(channel),

*led_on_p );
led_on_p ++;
this ->writeRegister(PCA9685_PWM_CH(channel )+1,

*led_on_p );

The repository, hosted on Github, is structured in directo-
ries with included headers (/inc), source files (/src) and exam-
ples. Each example has its subfolder containing a C++ ap-
plication and a makefile. Each application makefile is imple-
mented using the vpath directive, being able to find the de-
pendencies contained in the include and source folders. The
makefile also compiles and links the object files with the g++
compiler, so the user only needs to call the make command to
get the executable [10].

This framework permits the community to provide new ex-
ample applications just by implementing a new C++ main
code and adding a makefile. This file might be similar to the
makefiles earlier implemented.

C. Using the PCA9685 with external drivers

In some applications, just the raw PWM signal may not be
driven in the proper way to satisfy the output circuit require-
ments for voltage or current. It means that some external driv-
ing circuit might be necessary.

Figure 7: Simple MOSFET based current driver for LEDs.

R1

Q1

Vdd

R2

Q2

Vdd

D1
D2

A B

LEDn

LEDn

For example, servo motors often require a signal on differ-
ent voltages than that supplied by the SoC, in its 3.3v stan-

1Available at: https://github.com/Sr-Vinicius/pca9685_raspberry

3



dard. Or yet, higher power LEDs draw currents greater than
the SoC’s maximum current per port.

A straightforward answer is to use a driver based on N-
MOS or P-MOS transistors. The same circuit could work both
as logic level shifter as current driver.

In Figure 7, the MOSFET circuit is used to drive LED cur-
rent in applications where brightness is controlled by PWM. It
can be driven using a N-MOS with the load being pulled-up,
or a P-MOS with the load being pulled-down.

Figure 8: Unidirectional logic level shifter circuit.

R1

Q1

Vdd

R2

Q2

Vdd

Output Output

LEDn

LEDn

A B

Figure 8 shows the logic level shifter application. For ex-
ample, a servo motor could be connected to the circuit output
to receive angle setpoints via PWM signal.

Depending on the pin output topology configured in
MODE2 and the external driver the output signal may be in-
verted. Also, the PCA9685 has a inverting configuration (bit 4
of MODE2), that enable the inverse logic over the signal. The
signal can be foreseen accordingly with the table 1.

Table 1: Output signal polarity for every output circuit and MODE2
configuration.

External driver INVRT OUTDRV Output signal
A 0 0 output state values inverted
A 0 1 output state values apply
A 1 0 output state values apply
A 1 1 output state values inverted
B 0 0 output state values apply
B 0 1 output state values inverted
B 1 0 output state values inverted
B 1 1 output state values apply

In a study case, a printed circuit board was projected. The
board, showed in Figure 9, was made to use the chip with
the Raspberry Pi, being able to connect to the single board
computer using its pin header. The board adopted the strategy
showed in figure 8.A, applying the N-MOS circuit pulled-up.
In the projected board, the I2C address could be easily changed
through a DIP switch.

The board’s power source have two isolated voltages. The
3.3v voltage, necessary for the chip, is supplied by the Rasp-
berry Pi through the pin header. This smaller voltage is used
to energize the chip. The external voltage must be supplied by
an external power source connected on the screw terminals.
This voltage, varies from 5v to 20v, which is gate-source volt-
age range for the selected N-MOS (the BSS138) [9] and the
possible applications. This power source is used so supply the
JST connector that may be wired to servo motors. As well, the
external voltage supplies a LED and a cooler fan.

Figure 9: PCA9685 use case. The board was designed to control servo
motor with the Raspberry Pi.

III. RESULTS AND DISCUSSION

First of all, it was necessary to test whether the imple-
mented methods correctly modified the PCA9685 registers. To
perform this task, a Linux tool called I2C Utilities was used.
The tool has a few commands which can be used to accom-
plish I2C transactions to slave devices connected to the system
[11]. For this test, only the command i2cget is used.

Figure 10: Library test on a Raspberry Pi. I2CUtilities’ commands were
used as proof of concept.

user@raspberrypi:~ $ uname --machine
armv7l
user@raspberrypi:~ $ cat /etc/os-release
PRETTY_NAME="Raspbian GNU/Linux 11 (bullseye)"
NAME="Raspbian GNU/Linux"
VERSION_ID="11"
VERSION="11 (bullseye)"
VERSION_CODENAME=bullseye
ID=raspbian
ID_LIKE=debian
HOME_URL="http://www.raspbian.org"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"
user@raspberrypi:~ $
./ pca9685_raspberry/examples/i2c_test/i2c_test

===============================================
PCA9685 I2C test ...
Test complete!

user@raspberrypi:~ $ i2cget -y 1 0x43 0x00
0x01
user@raspberrypi:~ $ i2cget -y 1 0x43 0x01
0x04
user@raspberrypi:~ $ i2cget -y 1 0x43 0x06
0xe8
user@raspberrypi:~ $ i2cget -y 1 0x43 0x07
0x03
user@raspberrypi:~ $ i2cget -y 1 0x43 0x08
0x00
user@raspberrypi:~ $ i2cget -y 1 0x43 0x09
0x00
user@raspberrypi:~ $ i2cget -y 1 0x43 0xFE
0x79

4



The method adopted was in accordance with the following
sequence: a set of commands to read system information, exe-
cution of a test code with the library included and a verification
using I2C Utilities.

Reading the system info before the test shows the library
compatibility across different hardware and operating systems.
It was done to find out whether the library is portable or not.

Figure 10 is the terminal view of a test accomplished in the
Raspberry Pi. It shows the system have an ARMv7 architec-
ture processor and operates with the Raspbian operating sys-
tem. Then, the binary i2c_test is executed. The code config-
ures MODE1 and MODE2 registers, sets the PWM frequency
and writes a duty cycle to the IC’s channel 0.

The duty cycle value written to the output is 1000. Check-
ing the values on the registers 0x06 (LED0_ON_L) and 0x07
(LED0_ON_H), it returns the values 0xE8 and 0x03 respec-
tively. As discussed earlier, the 4 LSBs of LED0_ON_H rep-
resents the 4 MSBs of the 12-bit duty cycle value. The 8 LSBs
after these numbers is the value stored in LED0_ON_L. So,
the final value must be formed left shifting 0x03 by 8 and
adding 0xE8. Thus, duty_cycle = (0x03 << 8) + 0xE8 =
1000.

The value returned by the last i2cget shows the prescale
value. The equation 1 can be used to get the frequency, since it
is known that osc_clock = 25Mhz and prescale_value= 0x79.
Using these values in the equation, f req = 50Hz, as set in the
code.

Figure 11: Library test on a NVIDIA Jetson Nano. I2CUtilities com-
mands were used as proof of concept..

user@jetson:~ $ uname --machine
aarch64
user@jetson:~ $ cat /etc/os -release
NAME="Ubuntu"
VERSION="18.04.6 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 18.04.6 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu"
PRIVACY_POLICY_URL="https://www.ubuntu/legal/terms -and -policies/privacy -policy"
VERSION_CODENAME=bionic
user@jetson:~ $ ./ pca9685_raspberry/examples/i2c_test/i2c_test

===============================================
PCA9685 I2C test ...
Test complete!

user@jetson:~ $ i2cget -y 1 0x43 0x00
0x01
user@jetson:~ $ i2cget -y 1 0x43 0x01
0x04
user@jetson:~ $ i2cget -y 1 0x43 0x06
0xe8
user@jetson:~ $ i2cget -y 1 0x43 0x07
0x03
user@jetson:~ $ i2cget -y 1 0x43 0x08
0x00
user@jetson:~ $ i2cget -y 1 0x43 0x09
0x00
user@jetson:~ $ i2cget -y 1 0x43 0xFE
0x79

Figure 11 shows the same test performed on the NVIDIA
Jetson Nano. The system information says that the system has
the aarch64 (64-bit ARM) architecture and the Ubuntu 18.04
operating system. Even with this different environment, the
library operated smoothly. It is also possible to check that the
I2C Utilities obtained the same values from the chip registers.
This suggests that the library has achieved a wide portability.

Once the chip registers was properly modified, it was nec-
essary to verify if the PCA9685 was generating the signal cor-
rectly. It was also necessary to check whether the board ampli-
fied the signal, as proposed. This task was done with an oscil-
loscope, which measured the same signal from the projected
board and a commercial one. The commercial board does not
have the output driver circuit, and so, the voltage level is 3.3v
as supplied by the Raspberry.

Figure 12 shows the comparison between the generated sig-
nals. The signal in green is that generated with the commercial
board. The signal in yellow is that generated with the output
drivers, supplied with 5v. It is seen that the output amplifica-
tion operated successfully.

The Figure 12 also permits checking other output measure-
ments. The measured frequency didn’t reaches the value con-
figured in the prescale register accordingly with the equation
1. For the designed board it was measured that the frequency
had a value equivalent to 52.9Hz. This 2.9Hz was constant
over time. For the commercial board a frequency offset was
also observed. In this last case, the measured frequency was
49Hz, i.e. a −1Hz offset.

Figure 12: Signal amplification analysis using an oscilloscope.

With the signal’s frequency known, it was possible to mea-
sure the pulse width with the oscilloscope and evaluate if the
duty cycle stored in LEDn_ON registers were producing the
expected output.

Using the oscilloscope cursors positioned between the volt-
age pulse, it was measured that the pulse duration was ∆x =
1.88ms. With the ratio between the signal period and the 12-
bit value, it is possible to calculate the pulse width. The sig-
nal period is the inverse of the frequency value T = 52.9−1 =
18.9ms. In this example, the integer 408 is an arbitrary duty
cycle value. Thus,

18.9
w

=
4096
408

5



which results in w ≈ 1.88ms. It is approximately the value
measured in Figure 13, which proves the accuracy of the gen-
erated duty cycle.

Figure 13: Pulse width measuring.

It is possible to correct this frequency bias and get the ex-
pected pulse widths. After measuring the offset, it is only nec-
essary to subtract the bias from the desired frequency during
the frequency method call.

A second code is present in the library repository, this one
was made to test servo motors [7]. In this application, the
pulse width must be precisely set to get the expected angle.
Therefore, the measured 3.2Hz offset was subtracted during
the frequency configuration.

Figure 14: PWM with corrected frequency.

Figure 14 shows that the frequency reached the desired
50Hz value. Until now, there’s no automation method that
automatically corrects the frequency bias.

IV. CONCLUSIONS

The strategy of developing an external hardware for the
generation of PWM signals, using the PCA9685, demon-
strated that this strategy presents a stable signal output and
had with the possibility of integration with embedded applica-

tions with Linux as operating system. This absence of jittering
permits the solution to be used to control LED intensity or ser-
vomotor position with satisfactory stability. However, an off-
set on the frequency value must be considered. This frequency
offset, constant over time, must be estimated before the imple-
mentation of an application based on the PCA9685. After this
estimation and a proper correction in software, it is possible to
implement applications based on the PCA9685’s PWM with
stability and accuracy.

REFERENCES

[1] ByteSnap. FreeRTOS vs Linux for Embedded Systems.
Available: https://www.bytesnap.com/news-blog/
freertos-vs-linux-embedded-systems/. [Accec-
ssed Jul. 2023].

[2] Barkhausen Institut. Evaluation of PWM Per-
formance of RPi.GPIO and Navio2. Available:
https://www.barkhauseninstitut.org/
research/lab-1/our-blog/pwm-performance.
[Accecssed Jul. 2023].

[3] OLIVEIRA T. (2022). Entendendo o que é o PWM: a
técnica de controle de energia em eletrônica. Available:
https://eltgeral.com.br/o-que-e-pwm/

[4] Renesas Electronics Corporation (2019), The
Role of Jitter in Timing Signals. Available:
https://www.renesas.com/br/en/document/
whp/theroleofjitter-intimingsignals.

[5] R. HIRST (2013), ServoBlast [Source code]. Available:
https://github.com/richardghirst/PiBits/
tree/master/ServoBlaster

[6] NXP Semicondutors, 16-channel, 12-bit PWM Fm+ I2C-
bus LED controller, PCA9685 datasheet, Rev. 4, Apr.
2015

[7] V. F. Rodrigues (2023), pca9685_raspberry
[Source code]. Available: https://github.com/
Sr-Vinicius/pca9685_raspberry

[8] MOLLOY D. , Exploring Raspberry Pi: Interfacing to the
Real World with Embedded Linux, John Wiley & Sons, 1st
ed., Indianapolis, 2016.

[9] ON Semiconductor, N-Channel Logic Level Enhancement
Mode Field Effect Transistor, BSS138 datasheet, Rev. 6,
Nov. 2021.

[10] Free Software Foundation, GNU make. Available:
https://www.gnu.org/software/make/manual/
make.html

[11] RATHORE, S. (2021) I2C Utilities in Linux. Available:
https://linuxhint.com/i2c-linux-utilities/.
[Accecssed Jul. 2023].

6

https://www.bytesnap.com/news-blog/freertos-vs-linux-embedded-systems/
https://www.bytesnap.com/news-blog/freertos-vs-linux-embedded-systems/
https://www.barkhauseninstitut.org/research/lab-1/our-blog/pwm-performance
https://www.barkhauseninstitut.org/research/lab-1/our-blog/pwm-performance
https://eltgeral.com.br/o-que-e-pwm/
https://www.renesas.com/br/en/document/whp/theroleofjitter-intimingsignals
https://www.renesas.com/br/en/document/whp/theroleofjitter-intimingsignals
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster
https://github.com/Sr-Vinicius/pca9685_raspberry
https://github.com/Sr-Vinicius/pca9685_raspberry
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://linuxhint.com/i2c-linux-utilities/

	Introduction
	Development of the Hardware Solution for Generating PWM Signals
	The PCA9685 chip
	Interfacing the PCA9685 with a C++ library
	Using the PCA9685 with external drivers

	Results and discussion
	CONCLUSIONS

