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Abstract - The Distributed Energy Resources (DER)
emerged as an alternative to centralized generation since
it presents numerous economic and operational benefits,
such as, power loss reduction, voltage profile improvement,
and relieved system’s congestion. These benefits can be
obtained by optimized sizing and placement of the DER;
however, an improper DER integration can generate prob-
lems regarding the levels of current, voltage and power fac-
tor of the network. In this paper, the Cuckoo Search (CS)
metaheuristic algorithm was applied to solve the allocation
and sizing problem in IEEE 13 and 34 node test feeders in
order to improve the voltage profile. The results were com-
pared with the Particle Swarm Optimization (PSO) and
Genetic Algorithms (GA) with the purpose of validating
the CS method. Finally, it was possible to conclude that CS
algorithm presented satisfactory results, meeting all con-
straints regarding the amount of DER, voltage levels and
operational limits.

Keywords- Allocation, cuckoo search, distributed energy
resource, sizing.

I. INTRODUCTION

The impacts of DER on losses and voltages of networks
should be investigated comprehensively on distribution net-
works operation and planning [1]. It is important to note that
inappropriate determination of its size or location may lead
to increased system losses and costs which cannot be toler-
ated by the distribution system operators [2]. Some authors
apply analytical approach to solving this problem; in [3], the
Kalman filter algorithm was used to determine the optimal size
of DER. Moreover, the loss sensitivity factor that is based on
the equivalent current injection was developed in [4] to find
the optimal size and location of DER. These methods per-
form well for small and simple systems, however, they are not
suitable for a system with large and complex networks, since
these methods present high computational effort. Therefore,
many researchers have applied different methodologies based

on metaheuristics in order to obtain the optimized allocation
and sizing of DER in the distribution system.

In [5] and [6], the authors applied the Genetic Algorithms
(GA) for DER allocation and sizing in order to improve the
voltage profile and to reduce power losses. In [1], [7] and [8],
the Particle Swarm Optimization (PSO) was used for the same
purpose. In [9] and [10], only the DER allocation problem
was performed using GA and PSO, respectively; however, the
DER were assumed of the same size. Finally, it is also possi-
ble to verify the application of more recent methods such as:
Cuckoo Search (CS) and Crow Search Algorithm (CSA) in
[11] and [2], respectively.

In this paper, the problem of sizing and allocation of DER,
based on photovoltaic systems, was solved with the aim of
improving the voltage profile of the system, subject to the op-
erational constraints of the distribution network. For this pur-
pose, the CS optimization algorithm was used due to its re-
duced number of parameters to be tuned. In order to validate
the method, the results were compared with the PSO and GA
methods. Moreover, the distribution networks used to evaluate
the proposed methodology were the IEEE 13 and 34 node test
feeders. The main contributions of this paper are:

• It is possible to observe a comparison of metaheuristic-
based optimization methods: CS, GA and PSO.

• In the problem formulation of the DER siting and sizing,
the nonlinear operational limits of the DER systems, es-
tablished in the IEEE 1547-2018, were implemented as
constraints in the optimization methods.

The remainder of the paper is organized as follows: Section
II describes the methodology about the mathematical formu-
lation of the optimal DER allocation and sizing. Section III
presents the optimization methods applied: CS, PSO and GA.
In Section IV, the results and discussions related to the opti-
mization problem are shown. Finally, concluding remarks are
provided in Section V.
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II. OPTIMAL DER ALLOCATION AND SIZING

The Objective Function (OF) and constraints are formu-
lated in this section. DER placement and sizing have influ-
enced on the voltage drop in distributions networks; thus, the
OF consists in the minimization of the voltage deviation for
each phase and for each node of the distribution network, as it
can be observed in (1), where Vi j is the voltage in pu at node i
at phase j.

OF =
n

∑
i=1

m

∑
j=1

∣∣Vi j −1
∣∣ (1)

Equations (2) and (3) present some constraints related to the
voltage limits and maximum number of DER. The first con-
straint is about the voltage upper and lower limits which, in
this paper, must meet the criteria established by Procedure for
Distribution of Electric Energy in the National Electric System
(PRODIST) [12], where V min and V max are the minimum and
maximum voltages, respectively; and, the second constraint is
related to the maximum number of DER (nmax

DER) that can be
allocated in the system.

V min ≤Vi j ≤V max (2)

nDER ≤ nmax
DER (3)

Moreover, there are some constraints based on Standard
IEEE 1547-2018 [13]. It specifies the attributes of reactive
and active power control requirements of the inverters, which
are associated with each DER unit, depending on the category
in which this system will operate (Category A or B). Based on
[14], only DER units with Category B performance were con-
sidered in this paper with the purpose of dealing with power
quality issues that the large amount of dispersed generators
integrated could cause in the distributed system.

Figure 1 presents the graphic of reactive power capability of
the Category B, where the constraints could be observed in the
Equations (4), (5), (6) and (7) [13]. The minimum steady-state
active power capability corresponds to 5% of the rated active
power (Prated), the maximum capability of reactive power in-
jection is 44% of the rated apparent power of the inverter based
DER (Srated) and the maximum capability of reactive power
absorption is 44% of Srated [14].

(PDER)
2 +(QDER)

2 ≤ (Srated)
2 (4)

PDER ≥ 0.05Srated (5)

−0.44Srated ≤ QDER ≤ 0.44Srated (6)

−2.2PDER ≤ QDER ≤ 2.2PDER (7)

Finally, the active and reactive power balance in the distri-
bution system, as observed in (8) and (9) respectively, must be
guaranteed [14]; where Pload

i and Qload
i are the load active and

reactive power values, respectively; ii is the current injection
and Yi is the shunt admittance. Moreover, these four variables

refer to the node i, and Re and Imag correspond to the real and
imaginary parts of the complex values, respectively.

Figure 1: Reactive power capability of the category B based 
on IEEE 1547-2018.
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n

∑
i=1

(
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)
= 0 (9)

III. OPTIMIZATION METHODS

In this section, the optimization methods used in this work,
GA, PSO and CS, are briefly presented.

A. Genetic Algorithms

The GA are a particular class of evolutionary algorithms
that use techniques inspired by evolutionary biology. The
algorithms are initialized with a population of guesses, and
it is then processed by the three main operators: selection,
crossover and mutation [15].

B. Particle Swarm Optimization

The PSO consists in an evolutionary computational algo-
rithm, which was proposed in 1995 by Kennedy and Eber-
hart [16]. This algorithm is similar to GA. However, unlike
GA, PSO has no evolution operators such as crossover and
mutation. In PSO, the potential solutions called particles fly
through the problem space by pursuing the current optimal
particles. Each particle keeps track of its coordinates in the
problem space which are correlated with the best solution it
has attained so far [7].

All particles have their own velocity, which drives the di-
rection they move in. Each particle looks in a particular direc-
tion and, while communicating with others, they identify the
particle that is in the best location. Accordingly, each particle
speeds towards the best particle using a velocity that depends
on its current position. Each particle, then, investigates the
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search space from its new local position, and the process con-
tinues until the flock reaches a desired destination [17].

C. Cuckoo Search

The CS was introduced in 2009 by Yang and Deb [18].
This algorithm was inspired by the obligate brood parasitism
of some cuckoo species by laying their eggs in the nests of host
birds. Some cuckoos have involved in such a way that female
parasitic cuckoos can imitate various colors and patterns of the
eggs of a few chosen host species. This reduces the probability
of the eggs being abandoned so re-productivity increases [19].
Based on [20], this algorithm can be described in 3 steps:

• Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest;

• The best nests with the high quality of eggs will carry to
the next generations;

• The number of available host nest is fixed and if a host
bird identifies the cuckoo egg with the probability of
pa=[0,1], then the host bird can either throw them away
or abandon them and build a new nest.

IV. RESULTS AND DISCUSSIONS

In this work, the IEEE 13 node (Figure 2) and 34 node (Fig-
ure 3) test feeders were used in order to evaluate the proposed
comparisons between the aforementioned methodologies. It
is important to note that the voltage regulator between nodes
1-2 of the IEEE 13 node test feeder and the voltage regula-
tors between the nodes 7-8 and 19-20 of the IEEE 14 node
test feeder were disregarded with the purpose of analyzing if
the DER integration was able to improve the voltage profile
between the limits established in [12] for nominal voltage be-
tween 1 kV and 69 kV, as observed in Table I, where Vn is the
nominal voltage of the system. Another important observation
is that the three-phase power flow solution method used was
the Backward-Forward Sweep since this method is robust and
features high convergence speed [21].

Regarding the number of DER, in [5], 6 DER were chosen
for allocation in IEEE 13, 34 and 123 node test feeders in order
to ensure the greatest diversity of buses choices. In [8], tests
were carried out on systems with 37 nodes test feeder, select-
ing 9 and 37 DER. In this paper, the relation chosen between
the number of DER and the number of buses in the system was
40%. Thus, 5 and 13 DER were determined for IEEE 13 and
34 node test feeders, respectively.

Figure 2: IEEE 13-Node Test Feeder.
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Figure 3: IEEE 34-Node Test Feeder.
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Table I: Voltage limits.

Service Criteria Voltage Range
Adequate
Precarious

Critical

0.93Vn ≤ Vi j ≤ 1.05Vn 
0.90Vn ≤ Vi j ≤ 0.93Vn 

Vi j ≤ 0.90Vn
Vi j ≥ 1.05Vn

Finally, the maximum active power value was determined
from the penetration level, which is the percentage of the to-
tal load of the system. In [9], tests were performed using 4
different penetration levels: 40%, 60%, 80% and 100%. In
this paper, 55% was chosen as penetration level, and it was
possible to define the maximum apparent power value of each
DER, Srated , from the Equation (10). Thus, it was determined,
based on Equation (10), Srated equal to 126 kVA and 26 kVA
for IEEE 13 and 34 node test feeders, respectively.

Pmax
DER =

Mean(Total load)∗Penetration level
nmax

DER
(10)

The allocation and sizing of 5 DER were performed using
metaheuristic-based optimization methods: CS, GA and PSO.
With regard to the IEEE 13 node test feeder, the allocation and
sizing of 5 DER were performed using metaheuristic-based
optimization methods: CS, GA and PSO. Regarding the GA,
it was selected 150, 0.02 and 0.6 for population size, muta-
tion rate and crossover rate, respectively. Regarding the PSO
method, the population size was 150, the inertia weights were
0.4 and 0.9, and both acceleration factors were set to 2. Fi-
nally, regarding the CS method, it was selected 70 and 0.35
for pa and the number of nests, respectively. These parame-
ters were defined from tests, based on the references [10], [11]
and [22].

For the IEEE 13 node test feeder, the maximum active
power of each DER is equal to 126 kW, and the minimum and
maximum reactive power are -55 kVar and 55 kVar, respec-
tively. The OF values for the GA, PSO and CS metaheuristic
methods are 1.0879, 1.0333 and 1.0239, respectively. Table II
presents the nodes where the DER were allocated for each of
the employed methods. Furthermore, the values of the active
(P) and reactive (Q) powers, in kW and KVar, of each DER
are showed. From the analysis of Table II, it is observed that
the optimization algorithms presented similar results. For the
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5 nodes allocated, the results of the methods allocation pre-
sented 3 nodes in common: 8, 10 and 11. Furthermore, it is
noted that CS and PSO selected values close to the upper limit
of reactive power.

Table II: Optimization methods comparison for 13 node test feeder.

CS GA PSO
Node P Q Node P Q Node P Q

7 62 55 4 114 50 8 113 54
8 107 55 8 107 53 10 114 54

10 108 55 10 117 43 11 114 54
11 110 55 11 108 53 12 114 54
13 66 55 12 118 26 13 114 54

In Figures 4, 5 and 6, it is possible to compare the voltage
values for phases A, B and C, respectively, in which the volt-
age profile profile of the system without DER is presented in
black, whereas the voltage profiles of the system with DER al-
located using PSO, GA and CS are presented in blue, pink and
red, respectively.

Figure 4: Va results for 13-Node Test Feeder.

2 4 6 8 10 12

Node

0.92

0.94

0.96

0.98

1

V
 [

p
u

]

Original GA PSO CS

In the base case, where no DER are allocated, some volt-
age values of the IEEE 13 node test feeder, in black in Fig-
ures 4, 5 and 6, were lower than 0.93 pu, which is outside
the limits established by PRODIST. After the application of
the metaheuristic-based optimization methods, the voltage val-
ues respected the lower and upper limits of 0.93 and 1.05 pu,
respectively. Furthermore, it is concluded that CS and PSO
present voltages closer to 1.0 pu than GA, agreeing with the
results of OF for both methods.

Figure 5: Vb results for 13-Node Test Feeder.
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Figure 6: Vc results for 13-Node Test Feeder.
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For the IEEE 34 node test feeder, 13 DER were allocated,
with the maximum values of active power equals to 26 kW, and
the minimum and maximum values of reactive power equal
to -11 kVar and 11 kVar, respectively. Table III presents the
nodes in which the optimization methods allocated the DER.
In addition, the active (P) and reactive (Q) powers, in kW and
KVar, are also presented for each DER. From the analysis of
Table III, it is observed that the optimization algorithms pre-
sented similar results; and they selected 3 nodes in common:
30, 32 and 34.

Table III: Optimization methods comparison for 34 node test feeder.

CS GA PSO
Node P Q Node P Q Node P Q

8 16 7 4 22 -1 2 18 11
10 3 -2 6 16 -6 3 19 8
11 25 0 11 22 8 7 22 10
17 14 -5 12 25 7 10 21 11
18 15 -11 15 25 5 14 17 -11
26 21 7 17 14 6 16 6 -9
27 24 -1 22 21 7 23 14 -9
29 20 -2 23 21 7 26 23 11
30 11 8 28 23 8 28 22 11
31 22 -1 29 18 5 30 17 -11
32 24 9 30 14 11 32 24 5
33 17 -5 32 20 8 33 21 6
34 20 10 34 19 11 34 21 11

In Figures 7, 8 and 9, it is possible to notice the voltage
levels for phases A, B and C, respectively, in which the opti-
mization methods managed to meet the constraints related to
the levels established by PRODIST (between 0.93 and 1.05
pu). It is noteworthy that the methods presented similar volt-
age values, as shown in Figures 7, 8 and 9. Moreover, the
values obtained for the OFs for GA, PSO and CS are: 2.6364,
2.4785 and 2.5223, respectively. Thus, all methods presented
similar results, as it could be noticed in the Figures 7, 8 and 9.

It is worth noting that all methods allocated most of the
DER in the last nodes of the IEEE 13 and 34 node test feeders.
This is due to the greater distance between these nodes and the
substation, which has, as a result, a greater voltage drop. Thus,
DER are allocated in these nodes in order to improve voltage
levels.

In the Figures 10 and 11, it is possible to observe in red, the
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active and reactive powers of the DER allocated and sized by
the CS optimization method of the IEEE 13 and 34 node test
feeders, respectively. Therefore, it was possible to meet the
operational restrictions established in Standard IEEE 1547-
2018.

Figure 7: Va results for 34 node test feeder.
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Figure 8: Vb results for 34 node test feeder.
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Figure 9: Vc results for 34 node test feeder.
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Therefore, the CS optimization method presented similar
results to PSO and GA for DER allocation and sizing meet-
ing all constraints: the maximum number of DER, the lower
and upper voltage levels established by PRODIST and the op-
erational limits established by the IEEE Standard 1547-2018.
This method has, as an advantage over the PSO and GA meth-
ods, the reduced amount of adjustment parameters for opti-
mization; thus it is just necessary to adjust two parameters:
the number of available host nest and the probability of a host
bird identifies the cuckoo egg. As a result, it is potentially
more generic to adapt to a wider class of optimization prob-

lems [20].

Figure 10: CS results of the reactive power capability for the 
IEEE 13 node test feeder .
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Figure 11: CS results of the reactive power capability for the 
IEEE 34 node test feeder .
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V. CONCLUSIONS

In this paper, it was proposed the allocation and sizing
of DER applying the CS optimization method, as it presents
lower parameters to adjust when compared to GA and PSO.
For this purpose, the IEEE 13 and 34 node test feeders were
used; and, to validate the method, the results were compared
with the PSO and GA methods. It is noteworthy that all meth-
ods were able to meet all constraints regarding the number
of DER, voltage limits and operational limits. For the prob-
lem of minimizing the voltage deviation of the IEEE 13 node
test feeder, the CS presented the lowest value of OF in rela-
tion to the PSO and GA methods. Whereas for IEEE 34 node
test feeder, CS presented better results than GA, but similar to
PSO. Therefore, CS metaheuristic method presented satisfac-
tory results for the allocation and sizing of DER.
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